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An investigation of the development of small perturbations of gas dynamic 
parameters behind the front of a plane shock wave moving from a highly rare- 
fied (weightless) gas into a dense (perfect) gas is presented. The inter- 
face of the two gases is assumed to be lightly curved. An analytical solu- 
tion is given for a simplified case of Richtmyer's problem El] which was 
solved by him by numerical methods. Several papers dealt with the stability 
of plane shock waves propagating In a homogeneous medium, notably those by 
Freeman [2], D'iakov [3], Zaldel' [4], and also the substantial work of 
Iordanskli [ 53. These Investigations prove that a plane shock wave is sta- 
ble. The solution of problems considered in this work follows the method 
proposed in f4] which leads ,to a system of hyperbolic equations with condl- 
tions along moving boundaries. 

An analytic solution of this problem in linear approximation is given; 
the amplitude of the wave front distortions, and the propagation of such 
distortions in respect of time are analyzed. Proof Is given that amplitude 
changes of the front of a weak shock wave are Independent of boundary condi- 
tions; the law is the same for a wave from a lightly curved piston, as for 
a wave penetrating through a lightly curved interface (3.22) 

For a strong shock wave the amplitude of distortion of Its front is simi- 
larly Independent of the boundary conditions (3.15) and (3.16). 

However, the amplitudes of distortion of the front of a shock wave, and 
of a strong shock wave are notably different; 
tude Is proportional to //z, 

In the first case the ampll- 

ximately - s-'/2. 
while In the second It Is proportional to appro- 

1. Ststelpent of problem, Let it be assumed that the Interface of two 

spaces, one filled with an undisturbed gas, and the other with a weightless 

gas, Is in the plane y;: . The term weightless gas, in this context, means 

a gas of zero density and infinite velocity of sound, so that compressibility 

effects In it are absent. At time t = 0 a pressure, constant in time, Is 

created In the weightless gas which generates a plane shock wave, the front 

of which at moment t - 0 takes the form of the interface. A shock wave at 

constant velocity D will move through the gas. As one of the spaces is 
filled with a weightless gas, there Is no reflected wave. Let p0 and @,, 
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denote the Initial density and the local velocity of sound, and p end c 

the same parameters behind the shock wave front. 

For slmpllclty of calculations we assume the dense gas to be a perfect 

gas,with the lsentroplc index y . Denoting the velocity If the undisturbed 

interface by II and the velocity of the wave ln relation to the Interface 

by V, we have D - V + U . Introducing parameter b - l/jfca, where Fl,&,, 
Is the Mach number, we obtain the known relationship 

pa__ va i+(h--i)8 
c’ - 

h?+’ -- 
(h+i)-8 ’ r-1 

Having thus obtained the solution of the problem for undisturbed condl- 

tlons, we shall analyze ln linear approxlmatlon the propagation of the shock 

wave at its entry into the lightly curved Interface of the perfect and the 

weightless gases. Without limiting the generality, we shall assume that the 

Interface Is slightly curved in one direction only, Its form being determined 

by e(Y) . The explicit form of Punctlon c(Y) will be established later. 

We shall use the same symbols as In [4], and a system of coordinates In which 

the interface Is static. 

The following linearized equations apply to perturbations of pressure p' 

and velocity components v,' and v,* ln the region where 0 c r < Vt G.9 

Perturbations of density p' are eliminated by the assumption of adlaba- 

tic conditions aP’ 2 w 
at=C at (l-2) 

Conditions at the shock wave front are formulated In the manner presented 

In C33 
ak i+6 , at 

vy’=-U~, vrf=------ 
i-6 

2p& p ’ at = 2pou PI7 
x= Vt (1.3) 

Here c(Y,t) Is the relative displacement of-the shock wave front from 

the plane x I vt . 

Initial conditions are established by the assumption that at t = 0, the 

shock wave front coincides with the interface plane where v,'= 0 . It fol- 

lows from (1.3) that for t = 0 , p'- 0 , thus the boundary comkltion for 

the pressure Is pl = 0 (1.4) 

The tangential velocity oomponent of V,' is Initially other than eero, 

and equal t0 23,' = - Use lay. 

Let e (Y) = A exp (ikY), where A end k are constants, and for small 

perturbations 
kA 4 1 (I.51 

The relationship between all parameters and the aoordlnate Y Is deter- 

mined by the factor elq, ( CkY) . m introducing 

P’ I PC = w, VT1 = u, vu’ = - LV, kX=r, kct= y (1.6) 
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the problem Is reduced to the solution of a system of equations 

with boundary conditions 

w = wof (Y) for x = 0 , u=Aw, * = Bw 
82 for x = PY (P < 1) (1.8) 

Here 

A I+6 
=zp, B=2_1-8P 1 -__ 

P II 2 PO 1 (1.9) 
with initial conditions 

u =o, w=o v=vc for z=y=O (q,=UkA) (1.10) 

2. Solution of the b_ prob1.m. Introducing new variables 

and after 

sented ln 

Y = r c”“he, x=rsinhe, r =I/ya-xa, ‘“8=x/y (2.1) 
certain transformations, the system of equations (1.7) can be pre- 
the form 

$++g+V=M3=0, ~+~~+,ti*e=o 

(2.2) 

where function w satisfies Equation 

arto 
7@+fg-fag+w=0 

Boundary and initial conditions are presented as follows: 

(2.3) 

w = wof (r) for e=o (2.4) 
u= Aw, $= (B-43, +-do) w for e = 00 (2.5) 

u = 0, w=o, v=vo 

For the solution of the system of equations 

tlal conditions as ln (2.4) to (2.6), we shall 
with r aa variable along the real axis. !Che 

boundary and initial conditions are 

co 

wl = w. 
s 
e-"'f(r) dr = 0, 

0 

ior r = 0 (2.6) 
(2.2) with boundary and lnl- 

use the Laplace transform 

transformation functions for 

8=0 (2.7) 

u1 = Awl, pe- vo =p*nheo f=aO)Wl, 8 = 80 (2.8) 
me system of equations (2.2) after the Laplaclan transformation have the 

form of Equations (2.7) and (2.8) In [41. Substituting 

p = sit&q, w1 (p, e> = m# (2.9) 
a wave equation Is obtained for ws(q.O), a general solution of which has 

the form 
(2.10) 
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where F and * are arbitrary functions. It will be seen from (2.7) that 
Q(4) - - F(p) for 8 w 0 , therefore, 

wz ($6 0) = F (4 + 0) - F (q - 0) (2.11) 

We shall re-write the second equation of system (2.7) from CC1 as follows 

&IP%- !F(q +e) + F(Q -0~1 + ~+hej = 0 

Consequently 

PUl - IF (q + 0) + F (q - S)l + zlu1sinh6 =cp (e) (2.12) 

where (p(e) Is an arbitrary function. It Is known from C61 that 

f (r = 0) = f (0) = lim pfl (p, 0) ioF p+ co 

Therefore 

w (0) = lim pwl (p, 9) = 0, 
P+W 

lim [ta”hqw2 (q, 6)] = 2F (CXJ) = 0 
q-+@J 

u (0) = lim pul = 0, lim pul = 0 
(2.13) 

P-+02 cl’00 

with Re TV - = ln Equation (2.121, the left-hand side becomes zero for 

any value of e , I.e. cp(e) I 0 . Taking 8 = e. in (2.12), and noting that 

de, 1 - 0 , we find from (2.7) and (2.8) that F(g) satisfies the equation 

of finite differences 

si,m 2q [F(q + 0,) + F (q - &)I - (a=~Sh2q + b) IF (q + 0,) - 
- F (q - $)I = 2v,~nbt$,c=hq (2.14) 

where 

a= A='$jj>1, b zzz &nh~o(~~~&, + msh&,) - A = y 

The existence and the uniqueness of solution of a similar equation was 

proved ln [4], while methods for the solution of finite difference equations 

are given in 173. We shall seek the solution of (2.14) for the Particular 

case of Re g - m in the form of series 

F(q) = f Ane-@n+l)q (2.15) 
r&T+ 

Substituting this expression Into (2.14), and equating coefficients at 
equal exponents, we obtain the following recurrent realtions for the coef- 

flclents Cn = 2An sinh (2?2 + 1) 8, : 

c _ ‘L~oJinh~o --_ Cl = CrJ 
MWo + (a - 2b) 

0 - 
a+cotheo’ 4 + c& 380 

[a + d (2r6 + 3) e&T,+, + 2bC, + [a - co* (an - 1) 001 G-1 = 0 
(2.16) 

According to (2.111, we have 

w2 (q, (3) = - g cn;~i2;“n~:;;oe-(2~+l)~ 
n==o 

(2. Ii) 

Proof of convergence of this solution Is glven in the work of Zaldel't4]. 

Reverting to the variable p= sirJlq and using the known formula C63 for 



Bessel's function 
( I/P% + 1 - $9” J,(r) + - 

v/P”+ i 

we obtain after certain transformations 
co 

rinh f2n + ‘) e 44 = - 2 CQ”h(,n+~)eo J2n+l (r) 
n=o 
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(2.18) 

Conversion to hltlai variables I and at Is arrived et by means of 

Formulas 
r = kct~l-+, z = X/et 

(2.10) 
d (Xn + 1) e = y2 [ (1 + Ty+l + (1 - qan+l I(1 - +n+l’*) 

Pressure et the shock wave front Is given by the series 

w(r,eo) = - f$ C,J,,,(s), s = kct 1/l - pa (2.20) 

Substituting Expression (2.20) into the se,ad equation for boundary con- 

ditions (2.5), we obtain after Integration 
co S 

(2.21) 

We shall note the reletlonshlp which follows frim Equations (2.14) and 

(2.17) for !I I 0 03 

w2 (0, $1 = Q = - x c, = - B~oov;~oo 
n=o 

(2.22) 

As the values of u(r,e,) and c(e) are proportional, the expresslon for 

the form of the shock wave front Is 
co co 

e (4 _=- - 
A :, 2 c G Jan+1 (2) dx (2.23) 

n=o ; 
Using Bessel's functions, 

does not contain integrals. 

G,(r) = f J&)dz, 
t 

Then 

this result can be presented ln the form which 

Denoting 

(n= 1,2,3, . . . ) (2.24) 

and we have 
Go (r) = Jo k), G, (r) = 2J, (r) + G-I (7) (2.25) 

nz C,,G, (r) = CoJo (r) + iI G PJan (r) + G-I (91 = 

+ &Jo (T) + n.l &+I PJ2n b) + G-I PII = (Co+ Cd Jo (4 + 
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As I.$',,-0 for n-0, we obtain, by continuing this process 

Summatlon of recurrent equation (2.16) for n to OD leads to the follow- 

ing relationship: (2.27) 

D, = o@b (2n + l)fl,] c, - [n - c&i (2n - 1)8,] c,_,> fn=& 2, *a .f 

mus, the form of the shock wave frwt is determined, in relation to time, 

by the series 

$ 5 kJ,n (s) (2.28) 
Tt=l 

3‘ cwbsn la&lb moos* For the asymptotic case with r p 1 we shall 

use Bessel's function 

We note from the flnZte difference equation (2.14) that for p - gtr , 

a#b, therefore 
(3.2) 

From (3.1) and (2.18) we find that 

As (3.2) Is fulfilled at the front of the shock wave, the first sum of 

Expression (3.3) becomes zero, and 

a) For the case of a strong shock wave (c - 0 , or n -L 0~) we have 

b-0 and a-b. It is to be expeated that for this mode, the solutlon 

of the asymptotic behavior will be substantially different, Specifically, 

the growth of perturbations will follow a different law, In this case Ew- 

tion (2.14) becomes (3.5) 

d 4 IF (4 + %) + F(g --+,)I - UcoshQ [F((1 +60)-F(q-%)] = &Pmk80 

As prevlously, we shall seek its solution in the form of a series (2.151, 

and obtain for C, 

c 
0 

= 2~0~@0 fa + 

a+attb%0’ 
~arh f2n + I) o,] cm+ [a - a,a (2n - q%l G-l - 0 (3.6) 

The convergence of series with such coefficients C,, is evfdent. The 

form of the front of a strong shock wave is determdned, in relation to time, 

by Formula (2.28) where & followa the relationshlp 
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Asymptotios are determined as previously, and 

b) It is of interest to analize the case of a strong nave for small 

but finite values of 6 4 1. By using the Integral form of Bessel's func- 

tion [8], the pressure at the wave front will be represented by 
‘/,irr 

w(r,$)=$Im [ \ ~2Wo)~(s-(/)&] 

0 
From (2.14) it follows that 

It is evident that the fundamental component of Integral (3.9) 

is given by point Q - +tn , and that the expression in braces in 

can be substituted by its value for p I 4-&n 

coefflclent nr In (3.4) for p I *t7f is 

and 6-O. We note that 

LV = i a$ wa (qi 00) 

after double differentiation, it follows from (3.10) that 

(3.9) 

(3.10) 

with sWl 

(3.10) 

N = -(hy& (for S-gl) (3.1lf 

In this manner, taking into account (3.11), It follows after necessary 

transformations of (3.9) and (3.10), that for s > 1 and 6 4 1 

sin (s sin~)~os~sin2~ 

Noting that the fundamental term of the Integral Is determined in the 

vicinity of point x I sin (0 I 1 , and extending the lower limit of integra- 

tion to - m , we obtain . 

(3.12) 

Making a = 1/S (h + 1) da, we obtain the sought Formula 

w (f-9 00) - - Ml/h+l& 8 
& as Re exp z s { [‘( 41 S@)} 

. 

0 

(3 13) 

Substituting this asymptotic expression for w(r,O,) into the second 

boundary condition (2.5) at the wave front, we have 
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Us),__ M 
A ,;i;o(h$1)PI/~Re~xp[ijs-_)],,,,) 

The asymptotic behavior of function A-IT(~) is established by 

tlng EXPreSSIOnS (3.4) and (3.9) into Formula (2.5) which yields 

E (8) iv 1 VW-- sin (s - l/m) 
A Q 33~%0 1/&p @# 01 

In accordance with (3.8), we have SOP the case of 5 - 0 

(3.14) 

substltu- 

(3.15) 

(3.16) 

A cpwarfson of Formulas (3.15) and (3.16) wfth Formulas (3.16) in I41 

shows that the asymptotic decay of perturbations OS the Soma of the shook 

wave Sront in respect to time is, within the accuracy of the constant coef- 

Sicients) the same for a shock wave moving from a lightly curved piston (see 

Formula (3.4) In 133) and for a shock wave penetrating through a lightly 

curved interface of two media. 

c) We shall now consfder the ease of a weak shock wave (~5 * If e Here 

with tanh R,= B - 1 , B,- 0~. In this case, of all the coeSflc2ents, A, 

there remains in (2.15) only the coeSSiclent A,, , As for a - 1 , b - 0 , 

we have AO- &, . It Sollows from (2.18) that 

w (r, e> = - VoJl (r) #if& 8 

We deduct from this that the fomUl8 for perturbations of pFeSSWe B’ 

relative to the undisturbed pressure p ia 

PI-. -- 2(h+1) NO.....- 1)kAexp (ikY)J’(kC” ml v-a (3.17) 
P -7d -r/G3 

The behavior of the front of a weak shock wave T(8) for b,- Z can be 

easily established by noting th%t ~(p + 6,) - 0 for t&,' 5 + We find from 

(2.14) 
w&5(+++- F tg -e,j = - 222,~80f+=q (3.@3) 

As e-4 = -/fp” + i- p, therefore 

WI fp, $) = - 2vow0, cm - $0” (3.19) 

and by using Laplacfan transform tables, we o&t-afn 

w(&) z - 4r~1v@N~a (r) (r3.20) 

Taking into account conditions (2.5) at the wave front, we find Srom the 

known Sunction w(r,B*) that 

and using the known IffeS0el’s functiOn8, W e dispose of integrals and obtain 

4 (8) --...-G - 
A 

2 Jl (s) 
s (3.22) 
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which coincides with the respective formula given by Zaldel' In [41. There- 

fore, the law of generation of Instability In a wave moving from a curved 

piston, and for a 

Is the same. 

4. Tho1rwoi 

of the shock wave 

Interface Itself. 

takes the form 

wave penetrating a lightly curved Interface of two media, 

growth o? porturbatlonr of tha lntrrtror. The penetration 

through the Interface Is followed by the rllovement of the 

At the interface 13 - 0 and the second of Equations (2.2) 

g+++o 
Substituting into this the expression for w(r,e) , we obtain 

(4.1) 

(4.2) 

We shall use the known Bessel's functions [8] for the Integration, and 

arrive at the expression for the movement of perturbations of the Interface 

[\J&)dz+ Jzn+l(r)--2 i Jzt+~@)] (4.3) 
6’ k=o 

A second Integration yields the expression for the amplitude of dlstor- 

tlons of the Interface 

[S 
rr J,,(x) G?X - rJ1 (r) - Jc, (r) + 2Jz’,, (r) - 

0 

- 2 k$l Jzk (r) - 2 kjl (I- Jo 6.) + 2J,I, (r) - 2 j J-al (1.))] c4m4) 

We.note that for a strong shock wave In a perfect gas with the Isentropic 

Index y I n/3 , the expression a - ~0th (2n - 1) 8, = 0, for n = 2, con- 

sequently coefficients C, and D, with subscripts 2,3,4 becomes zero. The 

analytical solution is of the form 

y = J,,(s) + $ Js (s), s = kct VI - p” (4.5) 

~=-0.1+0.9[rSJ,(~)dz-rJ~(r)+Jo(r)]”~ 
X0 (4.9 

0 

The asymptotic behavior of the distorted Interface for r > 1 Is found 
easily from Formula (4.4) 

In conclusion, the author wishes to express his sincere gratitude to 
R.M. Zaldel' for his help, and to L.A. Galin for a useful discussion. 
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